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1
SIMULTANEOUS AND LOOPLESS VECTOR
CALCULATION OF ALL RUN-LEVEL PAIRS
IN VIDEO COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to and claims priority to U.S.
Provisional Patent Application No. 61/746,703, filed Dec. 28,
2012, entitled SIMULTANEOUS AND LOOPLESS VEC-
TOR CALCULATION OF ALL RUN-LEVEL PAIRS IN
VIDEO COMPRESSION, and is related to and claims prior-
ity to Norwegian Patent Application No. 20121570, the
entirety of both of which are incorporated herein by refer-
ence.

FIELD OF THE INVENTION

The present disclosure relates to an implementation of
entropy coding/decoding of transform coefficient data of
video compression systems in computer devices or systems.

BACKGROUND OF THE INVENTION

Transmission of moving pictures in real time is employed
in several applications such as, but not limited to, video con-
ferencing, net meetings, television (TV) broadcasting, and
video telephony. Representing moving pictures requires bulk
information as digital video typically is described by repre-
senting each pixel in a picture with 8 bits, which is equal to 1
byte. Such uncompressed video data results in large bit vol-
umes, and cannot be transferred over conventional commu-
nication networks and transmission lines in real time due to
limited bandwidth.

Thus, enabling real time video transmission requires a
large extent of data compression. Data compression may,
however, compromise the picture quality. Therefore, great
efforts have been made to develop compression techniques
allowing real time transmission of high quality video over
bandwidth limited data connections. In video compression
systems, the main goal is to represent the video information
with as little capacity as possible. Capacity is defined with
bits, either as a constant value or as bits/time unit. In both
cases, the goal is to reduce the number of bits. A conventional
video coding method is described in the Moving Picture
Experts Group (MPEG) and H.26 standards. The video data
undergoes four main processes before transmission (i.e., the
prediction process, the transformation process, the quantiza-
tion process, and the entropy coding).

The prediction process reduces the amount of bits required
for each picture in a video sequence to be transferred. The
process takes advantage of the similarity of parts of the
sequence with other parts of the sequence. Since the predictor
partis known to both encoder and decoder, only the difference
has to be transferred. This difference typically requires much
less capacity for its representation. The prediction is mainly
based on vectors representing movements. The prediction
process is conventionally performed on square block sizes
(e.g., 16x16 pixels). Note that in some cases, predictions of
pixels based on adjacent pixels in the same picture, rather than
pixels of preceding pictures, are used. This is referred to as
intra prediction (not to be confused with inter prediction). The
residual represented as a block of data (e.g., 4x4 pixels) still
contains internal correlation. A conventional method which
takes advantage of this and performs a two-dimensional block
transform. In H.263, an 8x8 Discrete Cosine Transform
(DCT) is used, whereas in H.264, a 4x4 integer-type trans-
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form is used. This transforms 4x4 pixels into 4x4 transform
coefficients which can usually be represented by fewerO bits
than the pixel representation. Transform of a 4x4 array of
pixels with internal correlation may result in a 4x4 block of
transform coefficients with much fewer nonzero values than
the original 4x4 pixel block.

Direct representation of the transform coefficients is too
costly for many applications. A quantization process is car-
ried out for a further reduction of the data representation.
Hence, the transform coefficients undergo quantization. One
way of quantization is to divide parameter values by a num-
ber, which results in a smaller number that may be repre-
sented by fewer bits. This quantization process results in the
reconstructed video sequence being somewhat different from
the uncompressed sequence. This phenomenon is referred to
as “lossy coding.” The outcome from the quantization part is
referred to as quantized transform coefficients.

Entropy coding is a special form of lossless data compres-
sion. Entropy coding involves arranging the image compo-
nents in a “zigzag” order employing a run-length encoding
(RLE) algorithm that groups similar frequencies together,
inserting length coding zeros, and then using Huffman coding
on what is left.

In H.264 encoding, the DCT coefficients for a block are
reordered in order to group together non-zero coefficients in
an array, enabling efficient representation of the remaining
zero-valued coefficients. FIG. 1 shows the zigzag reordering
path (i.e., scan order). The pattern of the order of the zigzag
scan is configured according to the probability of non-zero
coefficients in each positions. Due to the characteristics of the
preceding DCT, the probability of non-zero coefficients in a
block decreases in the downward right diagonal direction of a
DCT block. When reordering the coefficients in a zigzag
pattern, as illustrated in FIG. 1, the non-zero coefficients
generally tend to concentrate in the first positions of the array.

The output of the reordering process includes a one-dimen-
sional array that contains one or more clusters of non-zero
coefficients near the start, followed by strings of zero coeffi-
cients. Due to the large number of zero values, the array is
further represented as a series of (run, level) pairs, where
“run” indicates the number of zeros preceding a non-zero
coefficient, and “level” indicates the magnitude of the non-
zero coefficient. As an example, the input array 7, -3, 0, 0, 0,
0,3,-1,2,-1,0,0,0, 1, 0, 1 will have the following corre-
sponding run-level values: (0,7), (0,-3), (4,3), (0,-1), (0,2),
(0,-1), (3,1) (1,1). When transforming the zigzag array to
run-level values, it is computationally expensive to loop over
all coefficients and check whether they are non-zero.

Video encoding for HD formats increases the demands for
memory and data processing, and requires efficient and high
bandwidth memory organizations coupled with compute
intensive capabilities. Due to these multiple demands, a flex-
ible parallel processing approach must be found to meet the
demands in a cost effective manner.

Video codecs are typically installed on customized hard-
ware in video endpoints with DSP based processors. How-
ever, it has recently become more common to install video
codecs in general purpose processors with a SIMD processor
environment.

Therefore, there is a need for a time and processor efficient
run/level or CAVLC (Context Aware Variable Length Cod-
ing) method taking advantage of the nature of the general
purpose processors ina SIMD processor environment with no
loops and without compromising with data quality.

SUMMARY OF THE INVENTION

The embodiments herein discloses a method in a video
coding or decoding process performed in a computer device
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for calculating run and/or level representations of respective
quantized transform coefficients representing pixel values in
a block of a video picture inserted in a coefficient array,
comprising the steps of generating a bitmask array inserting
“1” in corresponding positions of nonzero coefficients in the
coefficient array and “0” in corresponding positions of zero
coefficients in the coefficient array, respectively performing a
look up of the 8 least significant bits and the 8 most significant
bits of the bitmask in a look up table mapping all possible 8
bits bitmap values to corresponding lower part and upper part
bytemap values, patching the looked up lower part and upper
part bytemap values in a first bytemap array, and inserting the
bytes of the first bytemap array from index position 8 minus
the number of non-zeros in the 8 least significant bits of the
bitmask in a second bytemap array.

In some embodiments, the method also comprises a step of
determining the level representation by reading consecutive
bytes from the coefficient arrays being indexed by values of
the second bytemap array.

In some embodiments, the method also comprises the steps
of creating a copy of the second bytemap array in a third
bytemap array, adding +1 to each value of the third bytemap
array, shifting the values of the third bytemap array to the
right and subtracting the third bytemap array from the second
bytemap array, resulting in values corresponding to the run
representation.

In some embodiments, the entries in the look up table are of
8 bytes size, the lower part values are right aligned, the upper
part values are left aligned, and bytes not occupied by the
lower part and upper part values are stuffed with -1’s.

In some embodiments, steps in the method are executed by
SIMD instructions.

The embodiments herein also discloses a coding or decod-
ing device adjusted to calculate run and/or level representa-
tions of respective quantized transform coefficients repre-
senting pixel values in a block of a video picture inserted in a
coefficient array, comprising means for generating a bitmask
array inserting “1” in corresponding positions of nonzero
coefficients in the coefficient array and “0” in corresponding
positions of zero coefficients in the coefficient array, means
for respectively performing a look up of the 8 least significant
bits and the 8 most significant bits of the bitmask in a look up
table mapping all possible 8 bits bitmap values to correspond-
ing lower part and upper part bytemap values, means for
patching the looked up 8 bytes lower part and upper part
bytemap values in a first bytemap array, and means for insert-
ing the bytes of the first bytemap array from index position 8
minus the number of non-zeros in the 8 least significant bits of
the bitmask in a second bytemap array.

In some embodiments, the coding or decoding device also
comprises means for determining the level representation by
reading consecutive bytes from the coefficient arrays being
indexed by values of the second bytemap array.

In some embodiments, the coding or decoding device also
comprises means for creating a copy of the second bytemap
array in a third bytemap array, means for adding +1 to each
value of the third bytemap array, means for shifting the values
of the third bytemap array to the right, means for subtracting
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the third bytemap array from the second bytemap array,
resulting in values corresponding to the run representation.

In some embodiments of the coding or decoding device,
the entries in the look up table are of 8 bytes size, the lower
part values are right aligned, the upper part values are left
aligned, and bytes not occupied by the lower part and upper
part values are stuffed with -1’s.

In some embodiments of the coding or decoding device,
the means are implemented by SIMD instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a zigzag pattern indicating the coefficient
order of a coefficient array within a block;

FIG. 2 shows a flow chart illustrating how the run-level
code is calculated in a conventional implementation;

FIG. 3 is a flow chart illustrating the main steps of an
embodiment according to the present invention; and

FIG. 4A-4F is atable disclosing a look-up table being used
in one embodiment according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 2 is a flow chart illustrating how the run-level code,
according to Moving Picture Experts Group (MPEG-4) and
H.264, is calculated in a conventional implementation. After
quantizing the transform coefficients (Quant C) 201 in a
block, the Run variable and the position index (I) are set to
zero 203. Then, the quantized coefficients are reordered 205
to a one-dimensional array according to the aforementioned
zigzag pattern 100 shown in FIG. 1. The process then enters
into a loop for parsing the array to determine the run-level
values. First, it is checked whether—the number of positions
in the array is exceeded (i.e., I>16) 207. If not, it is then
checked whether current position in the array contains a zero
209. If so, both the Run variable and the position index (I) are
incremented, at steps 217 and 219, and the process proceeds
to the start of the loop. If the current position contains a
non-zero value, the current Run variable and the value of the
current position are stored as the Run-Level value, at steps
211 and 213. The Run variable is then reset 215, before both
the Run variable and the position index (I) are incremented, at
steps 217 and 219, and the process proceeds to the start of the
loop. The process ends whenever the position index (I)
exceeds the maximum size of the array, which, in the example
illustrated in FIG. 2, is 16.

As can be seen from the conventional implementation
illustrated in FIG. 2, the process always has to run through the
run-level encoding loop as many times as there are positions
in the array (i.e., 16 times in the example of FIG. 2). This
becomes very inefficient as most coefficients in C are zero,
and it is computationally expensive to loop over all coeffi-
cients and check whether they are non-zero.

According to embodiments disclosed herein, a simple and
computationally cheap method where all nonzero coefficients
quickly are determined simultaneously using table lookup
and SIMD (Single Instructions, Multiple Data).

In the following discussion, the same example of sequence
of coefficients of a 4x4 block that has been quantized and
reordered according to the standard as the one used in the
above background section will be used, inserted in the fol-
lowing one dimensional coefficient array:

coefficients
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As already indicated, it is required to calculate level and
run, where “level” simply are the nonzero coefficients stored
sequentially, and “run” are the distance between two subse-
quent coeflicients according to their original location

The result to be achieved is therefore as follows:

In order to achieve this result, a so-called bit mask is
generated where “1” denotes a nonzero coefficient and “0”
denotes a coefficient that is zero.

6

Note that the binary numbers above are flipped compared
with the illustrated bitmask, due to the fact that the least
significant bit is indexed O (as earlier mentioned).

The two tables are further merged together so that

bytemaps of the lower and the upper part corresponding to the
same lower and upper part bitmap value are aligned. Such a
merged table is illustrated in FIG. 4A-4F. Here, all possible
hexadecimal representations of the upper and lower part of
the bytemaps are placed side by side together with the corre-
sponding decimal representation of the bitmap. Also note that
the elements in the lower table are right aligned and the
elements in the upper table are left aligned, the reason of
which will be apparent in the later discussion. Also note that

coefficients 7 -3 0 0 0 0 3 -1 2 -1 0 0 O
bitmask 1 10 0 o0 O 1 1 1 1 0 0 O

Note that in the bit mask above, the leftmost bit is the least 20 the redundant bytes are stuffed with the hexadecimal ff,

significant bit, and is therefore indexed 0. This will implicitly
be taken into account in the further description, e.g. when
referring to “lower” and “upper”.

As run and level normally are calculated manually in an
inefficient loop that iterates over the coefficients sequentially
the inventor instead proposes, based on the bitmask, to gen-
erate a compact so-called bytemap that denotes the position
of the nonzero coefficients, as follows:

25

which in the following also may be referred to as -1.

In the above example, a look up of the lower 8-bits
“110000117=195 in the table returns,

Index o 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15

coefficients 7 -3 0 0 0 O 3 -1 2 -1 0 0 O
Bytemap 0 1 6 7 & 9 13 15

As can be seen, the byte map specifies the respective bit
positions of the non-zero coefficients in the sequence of coef-
ficients.

Stuft bytes are set to “~1” intentionally.
A look up of the upper 8-bits “11000101°=163 in the table

returns,
Apparently, there is one unique bytemap for each possible 4°
bitmask pattern. The inventor therefore further proposes to
map bytemaps to corresponding bitmasks in a lookup table. 3 9 13 15 -1 -1 -1 -1
However, since one table would be too large for practical
purposes as it would contain 256 elements of 16 bytes, alto- a5

gether 1 MB, two tables are used where one table represents
a lower part of the bytemap, and another table represents an

These two are then patched together resulting in,

-1 -1

-1 -1 0 1 6 7 8 9 13 15 -1 -1 -1 -1

upper part, each with 256 elements of 8 bytes, altogether only
4 KB. The mapping of the bytemap and bitmask of the
example above will be as follows:

Upper part:

Dec: 8,9,13,15 Hex:08090d0f=>Dec:163 Bin:10100011
Lower part:

Dec: 0,1,6,7 Hex: 00010607=>Dec:195 Bin:11000011

55

This 16 byte array is then stored in a 24 byte buffer in a
manner that always ensures that element 8 happens to be the
starting position of the bytemap. Thus, it is proposed to cal-
culate the number of bits set (equal to 1) in the upper 8-bits
part of the mask, e.g. using the SIMD instruction POPCNT
and store the 16 byte vector at this offset. In the example, there
are 4 bits set in the upper part of the mask, and the result
becomes:

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

c ¢ ¢ ¢ -1 -1 -1 -1

o 1 6 7 8 9 13 15 -1 -1 -1 -1
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Here, C denotes uninitialized bytes. Then, the 16 bytes
from position 8 is read as follows:

8
unsigned short bitmask=~_mm_movemask_epi8(_mm_
cmpeq_epi8(v(&coeffs),0));

15 14 13 12 11

10

13 15

The level values are then obtained in a single step by e.g.

calling the SIMD instruction PSHUFB, with the coefficients 10

and the bytemap as the argument, giving the following result:

Note that this bitmask would be expected to be:

{1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1}

coefficients 7 -3 0 0 o 0 3 -1 2 -1 0 0 0
bytemap c ¢ ¢ CcC -1 -1 -1 -1 0 1 6 7 8
PSHUFB 7 -3 3 -1 2

Then, the run is calculated by subtracting the bytemap by
the shifted bytemap +1 as follows. The reason stuff bytes are
set to -1 is that the stuff values after shifting and adding +1
should be zero to obtain the correct run after subtraction.

However, the bitmask would actually be the reverse of this, as
the least significant bit corresponds to index zero:

{1,0,1,0,0,0,1,1,1,1,0,0,0,0, 1,1}

bytemap c cccC-1-1-1-10 1 6 7 8 9 13 15
PADDB 1 c cccc 0o 0 01 2 7 8 9 10 14 16
PSLIDQ1 € C C C C C ©0 0 0 1 2 7 8 9 10 14
PSUBUSB C C C C C C 0 0 0 O 4 0 0 0 3 1
Finally, the number of nonzero bytes of the entire bitmask 5,  This bitmask can actually be regarded as a number, and

is calculated e.g. by using the SIMD instruction POPCNT. In
this example, POPCNT returns 8 and the result, as desired,
the final result becomes:

The main elements of the embodiment discussed above is
illustrated in the flow chart of FIG. 3.

As already indicated, the embodiment described above
may advantageously be implemented by SIMD instructions
in a SIMD processor environment. In the following, the
example above will be described by referring to a concrete
executable SIMD instruction set. The functions used are com-
monly known functions for persons skilled in the art. The
instruction set is highlighted in italics, and are merged with
the explanation of the different parts of the instruction set.

#include “magic.h”

#include <stdio.h>

#include <nmmintrin.h>

#define O _mm_ setzero_si128()
#define v(x) *(___m128i*)(x)

int main( )

int i;

char buffer[24];
char bytemap[16];
char level[16];
char run[16];

char shiftmap[16];

The 16 coeflicients in a 4x4 block are stored sequentially in
a 16 byte array. In the example the coefficients are set to:

char coeffs[16]={7,-3,0,0,0,0,3,-1,2,-1,0,0,0,1,0, 1};
First, a bitmask that denotes which coefficients are not zero
must be determined
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each such number uniquely describes which of the 16 coet-
ficients that are nonzero. To avoid too many entries in the
lookup table, this number is split into a lower and upper part
in the following manner:

unsigned char bitmask_lo=bitmask&0x{f;

unsigned char bitmask_hi=bitmask>>0x8;

The result of this operation is
lower mask {1,1,0,0,0,0,1,1}
upper mask {1,0,1,0,0,0,1,1}

These two numbers are 8-bits each, and 8-bits integers are in
the range from 0 to 255. In the example, the two numbers are:
lower mask 195
upper mask 163

With these two numbers, a lookup in the bytemap table will
identify the corresponding bytemaps.

At location 195 on the left part of the bytemap table the
hexadecimal number Ox{fffffff00010607 can be found, and at
location 163 on the right part of the bytemap table the hexa-
decimal number 0x08090dOLTTTTTff can be found. Hence,

long long bytemap_lo=magic|bitmask_lo][0];
results in ff ff {ff ff 00 01 06 07, and

long long bytemap_hi=magic|bitmask_hi][1];
results in 08 09 0d Of ff ff ff ff.

The numbers above are written in hexadecimal format, and
if the corresponding decimal numbers are:
lower bytemap {-1,-1,-1,-1,0, 1,6, 7}
upper bytemap {8, 9,13,15,-1,-1,-1,-1}

Itis not a coincidence that the “unused” bytes are setto -1,
as this may help us to achieve the correct run values later. The
two bytemaps now need to be patched to obtain a single
bytemap.

The most naive way to do this, would lead to:
bytemap {-1,-1,-1,-1,0, 1, 6,7, 8, 9,13,15,-1,-1,-1,-1}

This, however, would not be so easy to use, as the bytes,
from which run and level are to be calculated are stored in the
middle of the array, at location 4 to 12.
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The “unused” bytes at each side of the table must therefore
be eliminated. To do this, the bytemap must be shifted as a
function of the number of nonzero bytes. In the following, X
denotes the locations in the upper bytemap which is nonzero,

and Y denotes the locations in the lower bytemap
shit=0 {Y, Y, VY, LY.V, X, X, X, X, X, X, X, X}

shifi=1 {Y, Y, YV, , , . , X, X, X, X, X, X, X -1}
shifi=2 {Y, Y, Y, Y, ., .\, X, X, X, X, X, X,-1,-1}
shift=3 {Y, Y, Y, Y, Y, Y, Y. Y, X, X, X, X, X,-1,-1,-1}
shift=4 {Y, Y, Y, Y, Y, Y, Y. Y. X, X, X, X,-1,-1,-1,-1}
shift=5 {Y, Y, Y, Y, Y. Y, Y. Y. X, X, X,-1,-1,-1,-1,-1}
shifi=6 {Y, Y, Y,Y,Y,Y, Y. Y, X, X,-1,-1,-1,-1,-1,-1}
shift=7 {Y, Y. Y, Y, Y, Y, Y. Y, X,-1,-1,-1,-1,-1,-1,-1}

shift=8 {Y,Y,Y,Y,Y, Y, Y, Y,-1,-1,-1,-1,-1,-1,-1,-1}
Thus, if all the bytes in the upper bytemap are unused “4”,

it will be necessary to shift the bytemap by 8, which would
mean that the first byte in the resulting bytemap would be the
first byte in the lower bytemap. In order to achieve this, the
bytemap may simply be shifted with the number of bits set in
the upper bitmask. One way to achieve this would be to first

count the number of nonzero bits in the upper bitmask:
int nonzero_hi=_mm_popcnt_u32(bitmask_hi);

If the patched bytemap is stored in a buffer at the location

which is equal to the number of bits set in the upper bitmask,
the following will be obtained for all possible combinations:
Position: 23,22,21,20,19,18,17,16,15,14,13,12,11,10,9, 8, 7,
6,54,3,2,1,0

nonzero_hi=8{Y,Y,Y,Y,Y,Y, L,V X, X, X, X, X, X, X, X, C,
C,CCC,CC C}

nonzero_hi=7 {C,Y, LY, Y, .YV, Y, X, X, X, X, X, X, X,-1,
C,CCC,CC C}

nonzero_hi=6 {C, C,Y, Y, Y, Y, Y,V YY, X, X, X, X X,
X,-1,-1,C,C,C,C,C, C}

nonzero_hi=5 {C, C,C, LYY, VY YYY X X X X,
X,-1,-1,-1,C,C,C,C,C}

nonzero_hi=4 {C CCOGYYYYYYYYX X X,

CYYYYYYYYXX,
X,-1, 1 -1,-1,-1,
nonzero_hi=2 {C, C
X,-1,-1,-1,-1,-1,-1, C,
nonzero_hl 1 {C, C
X,-1,-1,-1,-1,-1,-1,-1,
nonzero_hi=0 {C,C,C,C,C,C,C,C,Y, LYY, Y,YY,
Y,-1,-1,-1,-1,-1,-1,-1,-1}

where C denotes uninitialized bytes.

v(&buffer[nonzero_hi])=_mm_set_epi64x(bytemap_lo,
bytemap_hi);

,CCOYYYYYYYY

Then the bytes from location 8 in this buffer are read

obtaining, in the example case:
{cc, cc, cc, cc, ff, fF, T, {f, 00, 01, 06, 07, 08, 09, 0d, Of}

The nonzero bytemap written in decimal form then

becomes
{0,1,6,7,8,9,13,15}

v(&bytemap )=v(&buffer[8]);

The level values may now be calculated by simply using a
table lookup function on the coefficients with the last men-
tioned bytemap array as argument to obtain:

11,1,-1,2,-1,3,-3, 7}

v(&level)=_mm_shuffle_epi8(v(&coeffs),v(&bytemap));

However, to calculate the run values, the bytemap must first
be shift and add by 1 to obtain a “shiftmap”

Bytemap {C, C, C, C,-1,-1,-1,-1,0,1,6, 7,8, 9,13,15}
shift rightby 1 {C,C,C,C,C,-1,-1,-1,-1,0,1,6,7, 8,9,13}
shiftmap=add 1 {C,C,C, C,C,0,0,0,0,1,2,7,8,9,10,14}
v(&shiftmap)=_mm_srli_si128(_mm_add_epi8(v
(&bytemap),_mm_setl_epi8(1)),1);
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Then the run values will be obtained by subtracting the
shiftmap from the bitmap:
shiftmap—bytemap {C, C, C, C, C,-1,-1,-1,0, 0,4, 0,0, 0,
3,1}
v(&run)=_mm_subs_epu8(v(&bytemap),v(&shiftmap));
Then both the run and level are obtained. To complete the
instruction set, instructions for displaying run/level to a
screen is disclosed below.

int nonzero = __mm_ popent_ u32(bitmask);
for(i=0;i<nonzero;i++)

{

printf(“%4d”, level[i]);
printf(*'\n”);
for(i=0;i<nonzero;i++)

printf(“%4d”, run[i]);
printf(*'\n”);

return(0);

}

The main advantage of the present invention is that run and
level can be quickly determined using a simple table lookup
and efficient vector instructions, as opposed to the various
conventional methods that manually iterates over the coeffi-
cients one at a time. Treating the level values as signed bytes
is an approximation, and a fallback method has to be imple-
mented in the case in which two bytes is required to represent
the level. While the fallback method is considerably slower,
investigations have revealed that this represents a negligible
overhead as the signed byte approximation is valid more than
99% of time.

What is claimed is:

1. A method in a video coding or decoding process per-
formed ina computer device for calculating at least one of run
and level representations of respective quantized transform
coefficients representing pixel values in a block of a video
picture inserted in a coefficient array, the method comprising
the steps of:

generating a bitmask array inserting “1” in corresponding

positions of nonzero coefficients in the coefficient array
and “0” in corresponding positions of zero coefficients
in the coefficient array;

performing a look up of the 8 least significant bits and the

8 most significant bits of the bitmask in a look up table
mapping all possible 8 bits bitmap values to correspond-
ing lower part and upper part bytemap values;

patching the looked up lower part and upper part bytemap

values in a first bytemap array; and

inserting the bytes of the first bytemap array from index

position 8 minus the number of non-zeros in the 8 least
significant bits of the bitmask in a second bytemap array.

2. The method according to claim 1, further comprising the
following step:

determining the level representation by reading consecu-

tive bytes from the coefficient arrays being indexed by
values of the second bytemap array.

3. The method according to claim 1, further comprising the
following steps:

creating a copy of the second bytemap array in a third

bytemap array, adding +1 to each value of the third
bytemap array;

shifting the values of the third bytemap array to the right;

and

subtracting the third bytemap array from the second

bytemap array, resulting in values corresponding to the
run representation.
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4. The method according to claim 1, wherein the entries in
the look up table are of 8 bytes size, the lower part values are
right aligned, the upper part values are left aligned, and bytes
not occupied by the lower part and upper part values are
stuffed with —1’s.

5. The method according to claim 1, wherein the steps are
executed by Single Instructions, Multiple Data (SIMD)
instructions.

6. A device for one of coding and decoding that is adjusted
to calculate at least one of run and level representations of
respective quantized transform coefficients representing
pixel values in a block of a video picture inserted in a coeffi-
cient array, the device comprising:

means for generating a bitmask array inserting “1” in cor-
responding positions of nonzero coefficients in the coef-
ficient array and “0” in corresponding positions of zero
coefficients in the coefficient array;

means for respectively performing a look up of the 8 least
significant bits and the 8 most significant bits of the
bitmask in a look up table mapping all possible 8 bits
bitmap values to corresponding lower part and upper
part bytemap values;

means for patching the looked up 8 bytes lower part and
upper part bytemap values in a first bytemap array; and
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means for inserting the bytes of the first bytemap array
from index position 8 minus the number of non-zeros in
the 8 least significant bits of the bitmask in a second
bytemap array.

7. The device according to claim 6, further comprising
means for determining the level representation by reading
consecutive bytes from the coefficient arrays being indexed
by values of the second bytemap array.

8. The device according to claim 6, further comprising:

means for creating a copy of the second bytemap array in a

third bytemap array;

means for adding +1 to each value of the third bytemap

array;

means for shifting the values of the third bytemap array to

the right; and

means for subtracting the third bytemap array from the

second bytemap array, resulting in values corresponding
to the run representation.

9. The device according to claim 6, wherein the entries in
the look up table are of 8 bytes size, the lower part values are
right aligned, the upper part values are left aligned, and bytes
not occupied by the lower part and upper part values are
stuffed with —1’s.

10. The device according to claim 6, wherein the means are
implemented by Single Instructions, Multiple Data (SIMD)
instructions.



